Refine your search:     
Report No.
 - 
Search Results: Records 1-3 displayed on this page of 3
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Oral presentation

Verification of a high-precision numerical method for interfacial flows

Ito, Kei; Kunugi, Tomoaki*; Ohno, Shuji; Kawamura, Takumi*

no journal, , 

The method of manufactured solution (MS) is well known as a verification method of numerical simulation algorithms. In this study, the authors develop a new MS with dynamic interfacial deformation due to a vortex, which is a simplified model of the gas entrainment (GE) behavior in sodium-cooled fast reactors and is necessary for the verification of a high-precision numerical method developed for the simulation of the GE. The MS is considered on an axisymmetric system and radial, circumferential and axial velocities and pressure are formulated to satisfy the continuity equation and the boundary condition on an interface. Preliminary calculations are performed on five meshes with various resolutions and the calculation error decreases with mesh resolution. Such an appropriate result implies the developed MS is a good problem to verify the high-precision numerical method.

Oral presentation

Verification of high-precision volume-tracking method with Manufactured Solution

Ito, Kei; Kunugi, Tomoaki*; Ohshima, Hiroyuki

no journal, , 

In this study, the authors develop a new manufactured solution with dynamic interfacial deformation due to a vortex, which is a simplified model of the gas entrainment behavior in a nuclear reactor. The manufactured solution is considered on an axisymmetric system and radial, circumferential and axial velocities and pressure are formulated to satisfy the continuity equation and the boundary condition on an interface. The interfacial dent grows with time and a gas bubble is generated when the lower part of the interfacial dent is pinched off. A preliminary simulation is performed on a coarse mesh to investigate the dynamic interfacial deformation on the velocity field given by the manufactured solution. As a result, a reasonable interfacial shape is simulated at each elapsed time, which implies the developed manufactured solution is a good problem to verify an interface-tracking method.

Oral presentation

3 (Records 1-3 displayed on this page)
  • 1